The Wi-Fi seemed to have suddenly stopped working. Thousands of internet-linked TVs showing the ceremony around the stadium and in 12 other Olympic facilities had gone black. Every RFID-based security gate leading into every Olympic building was down. The Olympics’ official app, including its digital ticketing function, was broken too; when it reached out for data from backend servers, they suddenly had none to offer.
…If they couldn’t recover the servers by the next morning, the entire IT backend of the organizing committee—responsible for everything from meals to hotel reservations to event ticketing—would remain offline as the actual games got underway.
…All nine of the Olympic staff’s domain controllers, the powerful machines that governed which employee could access which computers in the network, had somehow been paralyzed, crippling the entire system.
…Almost exactly 12 hours after the cyberattack on the Olympics had begun, Oh and his sleepless staffers finished reconstructing their servers from backups and began restarting every service.
…The Pyeongchang cyberattack would turn out to be perhaps the most deceptive hacking operation in history, using the most sophisticated means ever seen to confound the forensic analysts searching for its culprit.
…When state-sponsored Russian hackers stole and leaked emails from the Democratic National Committee and Hillary Clinton’s campaign in 2016, we now know that the Kremlin likewise created diversions and cover stories. It invented a lone Romanian hacker named Guccifer 2.0 to take credit for the hacks; it also spread the rumors that a murdered DNC staffer named Seth Rich had leaked the emails from inside the organization—and it distributed many of the stolen documents through a fake whistle-blowing site called DCLeaks. Those deceptions became conspiracy theories, fanned by right-wing commentators and then-presidential candidate Donald Trump.
…The deceptions generated a self-perpetuating ouroboros of mistrust: Skeptics dismissed even glaring clues of the Kremlin’s guilt, like Russian-language formatting errors in the leaked documents, seeing those giveaways as planted evidence. Even a joint statement from US intelligence agencies four months later naming Russia as the perpetrator couldn’t shake the conviction of disbelievers.
…With the malware that hit the Pyeongchang Olympics, the state of the art in digital deception took several evolutionary leaps forward. Investigators would find in its code not merely a single false flag but layers of false clues pointing at multiple potential culprits. And some of those clues were hidden deeper than any cybersecurity analyst had ever seen before.
…In broad outline, Cisco’s description of Olympic Destroyer’s anatomy called to mind two previous Russian cyberattacks, NotPetya and Bad Rabbit. As with those earlier attacks, Olympic Destroyer used a password-stealing tool, then combined those stolen passwords with remote access features in Windows that allowed it to spread among computers on a network. Finally, it used a data-destroying component to delete the boot configuration from infected machines before disabling all Windows services and shutting the computer down so that it couldn’t be rebooted. Analysts at the security firm CrowdStrike would find other apparent Russian calling cards, elements that resembled a piece of Russian ransomware known as XData.
…There would be plenty of evidence vaguely hinting at Russia’s responsibility. The problem, it would soon become clear, was that there seemed to be just as much evidence pointing in a tangle of other directions too.
…The more that forensic analysts reverse-engineered Olympic Destroyer’s code, the further they seemed to get from arriving at a resolution.
In fact, all those contradictory clues seemed designed not to lead analysts toward any single false answer but to a collection of them, undermining any particular conclusion. The mystery became an epistemological crisis that left researchers doubting themselves. “It was psychological warfare on reverse-engineers,” says Silas Cutler, a security researcher who worked for CrowdStrike at the time. “It hooked into all those things you do as a backup check, that make you think ‘I know what this is.’ And it poisoned them.”
…“Even as it accomplished its mission, it also sent a message to the security community,” Williams says. “You can be misled.”
…By the end of that night, the traffic had thinned, he was virtually alone in the office, and he had determined that the header metadata didn’t actually match other clues in the Olympic Destroyer code itself; the malware hadn’t been written with the programming tools that the header implied. The metadata had been forged.
This was something different from all the other signs of misdirection that researchers had fixated on. The other red herrings in Olympic Destroyer had been so vexing in part because there was no way to tell which clues were real and which were deceptions. But now, deep in the folds of false flags wrapped around the Olympic malware, Soumenkov had found one flag that was provably false. It was now clear that someone had tried to make the malware look North Korean and failed due to a slipup. It was only through Kaspersky’s fastidious triple-checking that it came to light.
…Only after he had established those hidden connections did Matonis go back to the Word documents that had served as the vehicles for each malware sample and begin to Google-translate their contents, some written in Cyrillic. Among the files he’d tied to the Olympic Destroyer bait, Matonis found two other bait documents from the collection that dated back to 2017 and seemed to target Ukrainian LGBT activist groups, using infected files that pretended to be a gay rights organization’s strategy document and a map of a Kiev Pride parade. Others targeted Ukrainian companies and government agencies with a tainted copy of draft legislation.
…Even as that physical war had killed 13,000 people in Ukraine and displaced millions more, a Russian hacker group known as Sandworm had waged a full-blown cyberwar against Ukraine as well: It had barraged Ukrainian companies, government agencies, railways, and airports with wave after wave of data-destroying intrusions, including two unprecedented breaches of Ukrainian power utilities in 2015 and 2016 that had caused blackouts for hundreds of thousands of people. Those attacks culminated in NotPetya, a worm that had spread rapidly beyond Ukraine’s borders and ultimately inflicted $10 billion in damage on global networks, the most costly cyberattack in history.
…Matonis began painstakingly checking every IP address his hackers had used as a command and control server in their campaign of malicious Word document phishing; he wanted to see what domains those IP addresses had hosted. Since those domain names can move from machine to machine, he also used a reverse-lookup tool to flip the search—checking every name to see what other IP addresses had hosted it. He created a set of treelike maps connecting dozens of IP addresses and domain names linked to the Olympics attack. And far down the branch of one tree, a string of characters lit up like neon in Matonis’ mind: account-loginserv.com.
…Election officials had warned in 2016 that, beyond stealing and leaking emails from Democratic Party targets, Russian hackers had broken into the two states’ voter rolls, accessing computers that held thousands of Americans’ personal data with unknown intentions.
…At the end of his long chain of internet-address connections, Matonis had found a fingerprint that linked the Olympics attackers back to a hacking operation that directly targeted the 2016 US election. Not only had he solved the whodunit of Olympic Destroyer’s origin, he’d gone further, showing that the culprit had been implicated in the most notorious hacking campaign ever to hit the American political system.
…On July 13, 2018, special counsel Robert Mueller unsealed an indictment against 12 GRU hackers for engaging in election interference, laying out the evidence that they’d hacked the DNC and the Clinton campaign; the indictment even included details like the servers they’d used and the terms they’d typed into a search engine.
Deep in the 29-page indictment, Matonis read a description of the alleged activities of one GRU hacker named Anatoliy Sergeyevich Kovalev. Along with two other agents, Kovalev was named as a member of GRU Unit 74455, based in the northern Moscow suburb of Khimki in a 20-story building known as “the Tower.”
The indictment stated that Unit 74455 had provided backend servers for the GRU’s intrusions into the DNC and the Clinton campaign. But more surprisingly, the indictment added that the group had “assisted in” the operation to leak the emails stolen in those operations. Unit 74455, the charges stated, had helped to set up DCLeaks.com and even Guccifer 2.0, the fake Romanian hacker persona that had claimed credit for the intrusions and given the Democrats’ stolen emails to WikiLeaks.
Kovalev, listed as 26 years old, was also accused of breaching one state’s board of elections and stealing the personal information of some 500,000 voters. Later, he allegedly breached a voting systems company and then impersonated its emails in an attempt to hack voting officials in Florida with spoofed messages laced with malware.
…As the 2020 election approaches, Olympic Destroyer shows that Russia has only advanced its deception techniques—graduating from flimsy cover stories to the most sophisticated planted digital fingerprints ever seen. And if they can fool even a few researchers or reporters, they can sow even more of the public confusion that misled the American electorate in 2016.
Inside Olympic Destroyer, the Most Deceptive Hack in History | WIRED
hmmm